An Afternoon with Iain Stewart

Whilst working at last week’s British Science Festival I caught up with prominent geoscience communicator, Professor Iain Stewart. I knew his schedule would be chock-a-block for the short time that he was around, but, as he was a lecturer of mine at Plymouth University, I thought I should seize the opportunity and invite him for an interview. He accepted. Find out how it went below.


Iain is keen to promote geology as more than ‘just rocks’.


Saturday 8th September 2012, Aberdeen – Iain and I met on what was a glorious day in the Granite City; the sun was shining and the festival, with all its weekend punters, was buzzing with energy. Excitement was also building for the professor’s talk that evening; I took the opportunity to ask him a few questions before hand.

Science festivals are the pinnacle of the science communication calendar. They give scientists, journalists and professional science communicators a chance to reach the biggest audiences, generate the most press, collaborate with their peers and excite the public about their disciplines; the British Science Festival being no exception… So how does Iain find them?

“The science festival is great: it’s always good to try and do. I did it [the British Science Festival] before at Edinburgh, and also at Birmingham. I also come up for TechFest…so I’m used to coming up to Aberdeen for science.

“The whole point of having a post that’s geoscience communication is to talk to anybody that’ll listen to geoscience. The absolute core of it is the public and the really big venues for that are the science festivals like…Cheltenham and Edinburgh, so [I attend them] whenever I can.

“Last year I did one up in a little village in Otley: the Otley science festival – I think it’s the smallest science festival in Britain! There are loads and loads of them; in fact, I get more invitations than I can actually do, which is a real shame. They’re fantastic to do; great fun.”

At this particular festival Iain was to present a talk on, among other things, his up-coming BBC series, The Story of the Continents.

“Well, I wanted to call it Iain Stewart, In Continents. The new series is called The Story of the Continents, which sounds rather dull, and that’s what the title is: I went for the safe one!

“The series is taking the idea that we’re so familiar with the continents the way they are today…but as any geologist knows all those continents were together with Pangaea…[and] it’s the breakup of Pangaea that’s giving us the geography: the legacy that we have today.

“The series looks at the break-up and charts the stories of The Americas, Africa, Eurasia and Australasia and Antarctica. So there are four programmes.”

The contrast between being involved both as a scientist and as a presenter, it seems, is a delicate one.

“It’s an interesting balancing act, it’s always slightly difficult to judge what your perspective should be. You’re there as a geologist so you’ve got some specialist knowledge but you’ve also got to bring the viewer along as well. You can’t get away with just standing there and telling them…[so] you have to be on a learning journey yourself.

“There are things that you do know, and that you show the evidence for. Equally, you’ll meet real experts that are, maybe, a particular palaeontologist that has worked for twenty years on a fossil site, or an archaeologist that’s been working for ages on something…They’ve got real insight into something you shouldn’t have, or necessarily be expected to have. At that point you can be the viewer and ask simple, sometimes daft, questions that they might want to ask.

“Ordinary people think that if you’re a geologist, you know everything about geology; everything about rocks: metamorphic, sedimentary, igneous, palaeontology, sedimentology, geochemistry – maybe we should. But, when you become a researcher you end up becoming an expert in nothing but this tiny little thing…Telly rips you back out of that and presents you as this person who’s got a broad knowledge again. It always takes you on your journey, and you hope the viewers come with you.”

So how much of this specialist knowledge is used in the final programme and how does the partnership come together when filming?

“The whole thing is this complicated partnership. My contribution is about 50%, probably less. The key thing is having that role on the ground as we film, so we can change things.

“Some of the proposals come from the BBC, some of them come from me and others are kind of an amalgam. This one is the latter. In the early stage I’ll be involved with the arc of it all: what’s the purpose, what’s the message, how are we setting out? That early stage is the place to get the ideas in, the things that I’m interested in.

“What I tend to do after that is leave the directors alone. Essentially what they’ve got to do is a degree in six weeks. Some of the best ideas come from them…Suddenly they’re coming back and telling me a story that I’d never heard of before.

“Then you get the script…At that stage there’s not really many dramatic things you can do with it because it’s all scheduled…you can’t suddenly say ‘let’s not go to South America’.

“When we go out to film, people are really keen to riff, and [to use] whatever we find there. That’s the advantage of having an expert to be able to do that. You can’t do that with a celebrity presenter, but you can if you know your stuff.”

To get to where he is today, Iain had to make some big sacrifices. His journey was not a straightforward one, but one which he is happy with.

“I did a horizon in the late nineties…I’d done some telly really early on and I always really liked the performance side of the academic thing…We should be thinking of students as more of an audience, instead of a set of bums-on-seats that have paid their money and have an exam at the end of it.

“At that particular horizon programme I was asking them ‘why is there no geology on telly?’…They were saying ‘lots of people are trying to do it, but it’s not really come off’. So I was intrigued to find out why it is that’s it’s not come off?

“After that I just bubbled around for a few years; I was working at Brunel University at the time. Then, I don’t know, maybe it was a mid-life crisis: my wife and I just gave our jobs up; we moved back up to Scotland and I took a year and went round all the independent TV companies that I knew…I ended up putting in four proposals to Channel 4…I don’t know why I didn’t talk to the BBC initially, it was odd. Eventually I got talking to the BBC and we struck an idea about the Mediterranean: very quickly that became a major project. At one point I had the choice of going to Channel 4 or the BBC. I always felt that the BBC was the perfect place to learn the trade…They’ve been doing it for a long time. That’s a linear version of something that was a rather sprawling, rambling tale.

“In 2004, that’s when I decided I needed to get back into academia. The point was never to leave academia, but at that point I felt I had to leave to get some time and space.”

Since becoming a pioneer of geology on television, Iain has become a household name. Popular geology now has a place among the more traditionally exciting astrophysics or nature programming. So what has changed?

“I think the thing that’s crystallised in people’s minds is that geology isn’t just rocks…When you open it out and show that it’s to do with this enormous four-and-a-half billion year history of the planet; it’s do with these continental movements, earthquakes and volcanos; the incredible epic episodes in the planet’s past. Suddenly, all of that is magical television.

“What’s happened in the last ten years, and I’ve never thought about it really but, there’s a genre now. Hugely influential was Planet Earth…That transformed the standard of cinematography; people wanted to see epic landscapes and amazing scenery: the Earth doing great things. Suddenly the Earth was right for doing things.

“I describe it as how the planet works and what it means for us – that’s huge. If you can’t make TV programmes about that you shouldn’t be in television.”

The advantages of being a presenter of popular science programmes are obvious to many but, as many people know, nothing worth doing is easy.

“The best thing is the first meeting we have for a new series and they say, ‘Iain, where do you want to go?’…We have this great discussion and you leave just going ‘Oh my god!’ We end up going to amazing places but it’s really funny because a lot of the places I suggest we never go to in the end.

“The worst bit is the stage I’m in now: when you’re about two-thirds of the way through…You just get tired because it’s constant filming…It’s tricky not to get depressed, or a bit blasé about it. Next week I’m going to the Victoria Falls. That’s like one of the top 5 places – somewhere I’ve wanted to visit since I was a kid – and I’m going to end up getting there and probably going ‘oh, yeah, yeah, Victoria Falls’, just because it’s been months and months of places like that. I keep on trying to guard against that. It shouldn’t be that tough. It’s because you end up filming for about six months; you’re away from family; when you go back you’ve got a day job…It’s quite tiring. There is a point when you’re travelling and you just want your own bed, your own house and to walk into the office and have a cup of coffee. But how could you not want to go somewhere like Victoria Falls?”

As a professor of geoscience communication at Plymouth University, Iain has to balance the life of an academic with that of a television personality. He seems to relish each of the roles, but the difference between the two is very apparent.

“Television is a place where they tell you ‘you’re brilliant, you’re brilliant, you’re brilliant’; university is a place they tell you, ‘you’re shit, you’re shit, you’re shit’.”

“When I’m sick of filming, I come back and it’s great teaching and seeing students; a new set of students come in, it’s all great. Then when I get sick of you guys and marking, and you get sick of me, I’m off again and I’m a minor celebrity. What’s good about that is that it keeps you grounded.

“The two worlds actually end up balancing out, so you end up somewhere, hopefully, in the middle.”

So what effect does all this jet-setting have on the traditional aspects of an academic’s life, like research?

“The telly stuff eats up the research time; my teaching hasn’t changed but research is the free time, if you like, that the filming and telly stuff bites into – that’s one of the casualties.

“For me it’s not a problem because research I think is a pretty selfish business; you do it because you love doing it. Telly and filming fills that void for me: I’m happy doing that.”

Having said that, there still seems to be a big part of the professor that would like to get back in the saddle and hit the books.

“My interests have always been really recent Earth movements…Particularly the last ten thousand, hundred thousand years; overlapping with humans. I’m also getting interested in geoscience communication as a research thing; I’ve written a paper recently.

“Research is really important for a whole set of things. It’s good to go to research conferences…to listen other people’s research…It gives you loads of good ideas for television. The other side of it, which most academics have, is being able to come back and talk to students.

“I don’t want to get rid of the research; research is really useful for us, and it’s something I enjoy doing. There might come a time when I do less television to do more research, but I’ve not got to that.”

Does Iain believe that his science can break boundaries, propagate knowledge and change the world?

“Whenever you write something about earthquakes you’re always saying that it’s a big advance for seismic hazard and that it’ll save lives. I used to actually believe that, but I don’t believe it any more. In terms of the applied world I don’t really have any expectations that what I research is going to advance the knowledge of science and change people’s lives. I think a much more powerful way to do that is, funnily enough, through television.”

Iain had recently met some graduate geologists working in various geoscience positions. He closed by summing up his thoughts of the encounter.

“I was asking the students ‘what is it that we’ve taught you, that you use now?’ They couldn’t think what it was. It made me think that, actually, very little of what we teach you, specific things that we and you think that [are valuable] for jobs, will actually get you jobs. The things that get you jobs are the generic skills: critical thinking, being interested in this stuff; just becoming a geologist in general; acting like a geologist. One of the things I’ve realised is that basic communication…is probably more important in getting a job than some of the other applied modules.

“Whatever you do, you will always have to speak to people who don’t know about your subject. Even if you go on to do a PhD you’ll still be doing that, or even if you ditch geology and work in retail, you’ll still have to do that – I think it’s a generic graduate skill – that we don’t teach.”

I would like to thank Iain for his time and cooperation during the interview process, for his enthusiasm for my endeavours as a blogger, but mostly for the pint – which at some point when he’s not trawling the outback or scaling Mt Fuji – I will have to repay him for.

David Chapman

British Science Festival 2012 – Focus on Geoscience

The best from the Geology Section of this year’s festival

This year the British Science Festival, the flagship event of the British Science Association, will occupy the city of Aberdeen from the 4th to the 9th of September. The city, famed for its granite architecture, will play host for the first time since 1963.

The festival is this year hosted by the University of Aberdeen and is one of Europe’s largest celebrations of all things scientific. Its broad spectrum includes content from all areas of science, technology and engineering. All incorporated into over 250 events, activities, exhibitions and trips. With over 350 of the UK’s top scientists, researchers and science communicators – including Bill Bryson, Brian Cox and Iain Stewart – Aberdeen will be the hub of the science community for six days this September.

The University of Aberdeen. The hosts of this year’s festival.

With a 54-page programme, there really is something for everyone at this year’s festival. The roster includes events that fall into five audience levels: families, everyone, all adults, adults with some knowledge of the topic, and professionals.

Each major scientific discipline has a designated ‘section’ within the festival programme; geology being no exception. Each section has a President, Section Recorder, and Section Communications Officer. For the Geology Section these are Dr Lawrence Donnelly, of the IUGS initiative on forensic geology; Dr Richard Waller, of Keele University; and Dr Aofie O’Mongain, of the British Geological Survey. “I help to arrange and organise sessions at successive festivals in collaboration with organisations like the Geological Society of London, the Geologists’ Association and the British Geological Survey” said Geology Section Recorder, Dr Richard Waller.

The Geology Section seeks to ‘emphasise the relevance of geoscience to society, to explain the dramatic processes that shape our planet and to provide anyone who attends [the festival] the opportunity to meet and chat with some of the best known and active researchers in the field.’ This year includes subject matter such as the Earth’s magnetic field, climate change and – no doubt influenced by the primary sponsors of the festival, Shell and BP – myriad events centred on the fossil-fuel industry. The Geology Section also includes a field excursion, providing participants an opportunity to ‘stretch their legs and get out into the country’s spectacular landscape.’

With so much to see in such a short time, here is a run-down of the most hotly-anticipated geoscience events set to feature during the festival.

Tuesday 4th September

14.00 – 15.00 The Natural Gas Revolution
Organised by one of the festival’s principal sponsors, Shell, this talk will look at the role natural gas has to play in the world’s future energy needs. The talk explores how projects such as Shell’s Pearl GTL plant will help to meet the on-going stresses on energy supply and demand.

Venue: King’s Quad, Lecture Theatre 8, King’s College, University of Aberdeen. Audience Level: All adults Price: Free

15.30 – 17.30 The Future of Our Polar Regions: What Must We Do and How Can Science Help?
This two-hour event is a joint venture between the University’s Cryosphere and Climate Change group and the UK Polar Network. Audiences can participate by asking questions and voting on any issues raised. The talk also features an exhibition including polar fieldwork clothing, science equipment and field video diaries.

Venue: Fraser Noble Building, Lecture Theatre 2, University of Aberdeen. Audience Level:Everyone Price: Free

Wednesday 5th September

10.00 – 12.00 Our Fossil-Fuelled Future
Liam Herringshaw – post-doctoral researcher of palaeontology at the University of Aberdeen, 2006-2008 and blogger – asks what role do fossils have to play in everyday life? Liam, and other experts in the field, will investigate techniques used in the understanding of fossils and fossils fuels; answering the question of why they matter.

Why do fossils matter? Join Liam Herringshaw to find out!

Venue: Regent Building, Regent Lecture Theatre, University of Aberdeen. Audience Level:Everyone Price: Free

13.00 – 15.00 The Limits of Oil and Gas
This talk is organised by the University of Aberdeen and aims to delve into the issues emerging within the oil and gas industry. By looking at a variety of aspects from within the industry, the talk will be of interest to multi-disciplinary audience.

Venue: Regent Building, Regent Lecture Theatre, University of Aberdeen. Audience Level: All adults Price: Free

13.00 – 15.00 May the Force Be with Us: What Does Earth’s Magnetic Field Do for Us?
This will be, undoubtedly, one of the highlights of the programmed geoscience events. Organised by the Geological Society of London, it features three experts from the field of geophysics. Dr Kathy Whaler, professor of geophysics at the University of Edinburgh, will discuss how the Earth’s magnetic field is generated. Dr Jenny Tait, also from Edinburgh, seeks to inform participants of how the magnetic field has formed the basis of understanding for major branches of Earth Science and continues to do so today. Finally, Dr Ciaran Beggan, a geomagnetic specialist from the British Geological Survey, will consider the fate of the planet during the next magnetic reversal, whilst also pondering when this might happen.

Venue: Meston Building Lecture Theatre 1, University of Aberdeen. Audience Level: All adults Price:Free

Thursday 6th September

11.15 – 12.45 The Heat beneath our Feet
Investigate the science behind a potential new clean energy source: the internal heat of the Earth. The event aims to explain the links between the geology beneath our feet and the potential for using Earth’s thermal store as a source of energy. Organised by the British Geological Survey, this event features a ‘cycle your way to a hot bath’ challenge and a post-talk 3D visualisation suite (spaces limited).

Venue: Regent Building, Regent Lecture Theatre, University of Aberdeen. Audience Level: Everyone Price: Free

Friday 7th September

10.00 – 12.00 Life Down Below: The Search for a Deep Biosphere on Earth
This event looks into the world of the sub-surface; asking questions of where life may exist in the world beneath the topography, both on our home planet and others. Organised by the University of Aberdeen and supported by the Astrobiology Society of Britain this looks to be an exciting and novel approach to discovering new life in our universe.

Venue: Fraser Noble Building, Lecture Theatre 2, University of Aberdeen.       Audience Level: Everyone Price: Free

12.00 – 13.00 Charles Lyell Award Lecture: What do Dwarf Elephants Have to do with Climate Change?
This year’s award lecture, namesake of the great British geologist Charles Lyell, was awarded to Dr Victoria Herridge, post-doctoral researcher and resident dwarf-elephant-expert at the Natural History Museum. Dr Herridge uses the fossils of now extinct dwarf elephant species, from islands around the globe, to make inferences about climate changes in the recent geological past. Island species are often highly specialised and fast-evolving; the study of these animals, and other dwarf island-species, can inform us about fast-acting climate variability and the impacts of future climate change on animals alive today.

Venue: King’s College Conference Centre, Auditorium, University of Aberdeen Audience Level: Everyone Price: Free

Join Victoria Herridge to discover the links between dwarf-elephants and climate change.

Saturday 8th September

18.00 – 19.00 The Story of the Continents
Another highlight of the week for the Geology Section, this evening talk features geologist and television personality, Professor Iain Stewart. Iain Stewart has become the face of British popular geology in recent years, balancing his career as professor of Geoscience Communication at Plymouth University with various appearances and presenting roles for the BBC. This talk gives a preview of his latest endeavour: a four-part series in which he tells story of the major continents, one by one.

Iain Stewart will be telling the ‘Story of the Continents’.

Venue: Arts Lecture Theatre, University of Aberdeen. Audience Level: All adults Price: £10.00, concessions £8.00 *Book signing in Elphinstone Hall: £19.00

12.00 – 18.00 Whisky on the Rocks
Combining local geology with local whisky, this adults-only affair is led by geologist Steve Cribb. The six-hour journey takes you to sites of special geological interest as well as to a whisky distillery – exploring the role geology has to play in the process. The highly experienced Steve Cribb will no doubt be a delightful tour guide and play the perfect host for this very unique event.

Venue: Coach pick-up-point, University of Aberdeen. Audience Level: All adults Price: £10 (includes whisky tasting).

So, there you have it. The best this year’s festival has to offer for the geoscience community. There are many more events not mentioned in this preview and only by exploring the programme for yourself will you discover them all!

Tickets can be booked by phone (08456 807 207), online at the festival website or in person at the Aberdeen Box Office, Music Hall.

For any and all additional information please visit the British Science Festival’s website,

Be sure to check back next week when Geoscience Lines will be bringing you up-to-the-minute content from around the festival.

Follow Geoscience Lines on Twitter (@geosciencelines) for the latest content and check out previous posts on Curiosity’s geological mission and some interesting earthquake research from New Zealand.


David Chapman

8000-year Earthquake Record Forms Basis of Seismic Forecasting

Recent research by scientists from GNS Science, New Zealand and the University of Nevada-Reno, Reno provides insights into how isolated, geometrically simple strike-slip faults can produce a near-regular earthquake pattern – having implications for earthquake prediction.

The scientists, led by Kelvin Berryman of GNS Science, studied the Alpine Fault in southwest New Zealand. The Alpine Fault separates the Pacific tectonic plate from the Australian plate and is one of the longest, straightest and fastest-moving faults of its kind on Earth. Previous research on the Alpine fault had only produced age-estimates for the last four major earthquakes; Berryman and the team of scientists increased this to a record of 24 major earthquakes, stretching over a period of 8000 years – one of the longest continuous records of fault activity on Earth.

The Alpine Fault has slip rates ranging from 37-47 mm/yr along its length.

Researchers found that a pattern of cyclic stratigraphy in fault-adjacent deposits recorded the seismic history of the area. This allowed for a reliable, composite record of major earthquakes to be established. The layers in the sediments corresponding to earthquakes, known as event horizons, were dated using radiocarbon dating of leaves and seeds. All-in-all, eighty-two radiocarbon ages were used to produce the earthquake sequence.

The results of the paper, published in Science, estimate that there is a mean recurrence interval of 329 years for the 24-event data set. There hasn’t been a major earthquake on the Alpine Fault since written records began, around 170 years ago, but multiple lines of evidence suggest that it has produced large (moment magnitude (Mw) >7) earthquakes and poses a substantial seismic hazard.

By utilising an unusually long earthquake record, the scientists were able to categorise the Alpine Fault as ‘quasi-periodic’; meaning that – due to its simple geometry and isolation from other faults – it can be used as an end member for the characterisation of faults around the world that threaten major earthquakes. In other words, features observed in the Alpine Fault can be recognised in areas in which seismic records are much shorter. This has implications for earthquake hazard perception and forecasting. The researchers suggest that by studying features of faults; such as slip-rate, total slip, geometric complexity and interaction with other faults, and by relating them to long earthquake records such as that of the Alpine Fault, more informed decisions can be made in situations of earthquake prediction and hazard analysis.

Millions of people live near to major fault zones and studies such as this one can help create safer, more prepared communities when disaster does strike.

Original paper:

David Chapman

A geological mission to Mars

Can Curiosity match the exploits of Earth Scientists?

On the 16th of July 1965, Mariner 4, NASA’s fourth in a series of spacecraft designed to investigate the planets of our inner solar system, completed the first successful flyby of the Martian surface. The Mariner 4 mission was one of huge success among a string of other, not-so-lucky (or perhaps not as well executed), missions carried out in the 1960s; primarily by NASA and the USSR’s Soviet Space Program – including the latter stages of the Sputnik Program. The initial pictures returned from Mariner 4 depicted a heavily cratered, baron surface of the red planet – quashing the initial excitement of ‘life on Mars’.

Since Mariner 4, a mission of many firsts, the exploration of Mars has moved on significantly: there have been over thirty spacecraft launched to investigate the red planet since 1965, including eleven that planned to land. Of these, six can be classified as ‘true rovers’, including the British-built, Beagle 2, and twin rovers Spirit and Opportunity, built for NASA’s Mars Exploration Rover (MER) project for launch in 2003. Now, in 2012, NASA’s latest incarnation, Curiosity – dubbed by some as a robot-geologist – builds upon the success of the MER project, taking on board many of the best features of Spirit and Opportunity: six-wheel drive, a rocker-bogie suspension system and cameras mounted on a mast. Whilst Curiosity is in many ways similar to its predecessors, a lot has changed since 2003 and its differences are what set it apart as a truly cutting-edge machine. For instance, Curiosity carries twice as many scientific instruments and its entire science payload is over ten times the weight of Spirit and Opportunity’s. Despite being a bigger, more powerful, technologically advanced machine, NASA still managed to decrease the landing ellipse (an area in which they are 99% certain they can land the craft) by 75%!

Curiosity carries an array of scientific instruments that eclipses anything seen before on the red planet.

Curiosity landed on the Martian surface, inside its designated landing site, Gale Crater, at 05:31 UT on the 6th of August 2012. “We always knew it was going to be a great landing site…It’s not until you’re on the ground that you realise that something like this is going to be like driving around in western Utah – it’s going to be spectacular”. John Grotzinger, project scientist (and geologist), summed up his excitement after seeing some of the first ground-level images from Curiosity. Some may find “driving around in western Utah” a little underwhelming for a trip to Mars but it seems Grotzinger was trying to convey the 3D nature of the area surrounding the landing site, as all images up to this point had been from an aerial perspective.

Curiosity was built and is operated by the NASA mission team, Mars Science Laboratory (MSL), who are in-turn part of the Mars Exploration Program. The Mars Exploration Program’s overall science strategy is ‘following the water’. The MSL team will be seeking to contribute to this strategy by following specific objectives, with a view to reaching four main goals: (1) Determine whether life arose on Mars, (2) Characterise the climate of Mars, (3) Characterise the geology of Mars and (4) Prepare for human exploration. The primary goal of determining whether life arose on Mars is the driving force behind this mission and sees NASA go ahead with what is their first astrobiology mission since the Viking landers.

The robot-geologist

With one of four main goals of the MSL being to characterise the geology of Mars, Curiosity has been provided with a subset of instructions under the heading of geological and geochemical objectives. These are: to investigate the chemical, isotopic and mineralogical composition of the Martian surface and near surface geological materials; and to interpret the processes that have formed and modified rocks and soils.

So why is geology so important in what is essentially a search for life? Well, NASA itself has admitted that the question of whether life has existed on Mars is one which this mission alone cannot answer: “Curiosity does not carry experiments to detect active processes that would signify present-day biological metabolism, nor does it have the ability to image microorganisms or their fossil equivalents”. This means that Curiosity is not looking for life itself, but signals in the environment that suggest a suitable habitat for life. For example, one of the main strategies is to search for carbon-containing compounds known as organic molecules: an important ingredient for life that Curiosity can detect. This ability, along with many other facets of knowledge that can be coaxed from the rocks on Mars is what makes geology so integral to this mission. Geology is the link between the distant past and what we see today; if there’s a time in Mars’ history when life did exist, the only record of that will be in its rocks. That’s why Gale Crater was selected as the landing site: it is, in NASA’s opinion, the place where the rocks are most likely to paint a picture about the history of life on Mars.

Curiosity possesses instrumentation that far exceeds some of the world’s most well-equipped Earth Science laboratories, and eclipses the comparatively rudimentary tools used by field geologists. Among its arsenal is a laser-equipped, spectrum-reading camera – for vaporising rock surfaces; and an Alpha Particle X-ray Spectrometer for determining the relative abundance of selected elements. The more familiarly named (to the geologically inclined at least) Mars Hand Lens Imager – or MAHLI for short – is arguably the most important tool, if only for the wealth of fundamental knowledge it can provide. In the field, the hand-lens to a geologist is indispensable: it is imperative to build the basis of understanding, from which all other inferences proliferate. The application of a hand-lens in the study of a rock can provide information on properties such as colour, texture, cleavage, crystal size, crystal shape, sorting and composition; all of which have implications for such factors as how, why, at what rate and via which processes selected rocks were formed.

With a seemingly superfluous supply of equipment at its disposal, Curiosity seems destined for greatness, but can this one ton, $1.8 billion behemoth really match up to the achievements of the geologists and geoscientists on Earth?

Well this has been pondered, and scientists – including NASA’s own Shawn Domagal-Goldman at this year’s Cheltenham Science Festival – have discussed this very subject. Each will have their own views; many will say that the ability of an Earth Scientist to recognise the subtleties in an outcrop, to move around a site to get the perfect view of things or to create such detailed observations required for a top-notch geological sketch are simply unrivalled by mere machines. However, the fact of the matter is, we can’t put a human geologist on Mars, which makes the whole man vs. machine argument close to irrelevant. What we do have is a machine with the ability to carry out world-class research on a planet 127 million miles away. That is something which cannot be rivalled by anything attempted before.

The information provided by MAHLI and the other science instruments will be analysed by geologists, geochemists and other NASA scientists; as with most of science, the resulting conclusions will be up for debate. Not least because these rocks are alien to everyone; no one has ever touched a rock from Mars and how do we know what the products of over four billion years of geological processes on Earth’s neighbour will look like? Of course we will use our knowledge of Earth geology as an analogue, but what effect will physical and environmental characteristics have on the geology? For instance, there are crucial differences in how we distinguish wind-blown from water-lain sediments on Earth, but are these applicable on Mars? With Mars’ gravity being only 38% as strong as Earth’s and an atmospheric pressure less than 1/100th of that on our own planet, who’s to say that Martian sediments won’t portray their depositional histories in a way that misleads us…Only time will tell.

Looking to the future

NASA has had by far the most success when it comes to deciphering the geological history of Mars. It’s testament to the team at NASA’s Jet Propulsion Laboratory, California that the US government and president Obama continue to support missions of this size and expense, whilst others have fallen by the wayside. Just this week NASA announced plans to send a new spacecraft, InSight, to Mars in 2016. The craft will be equipped with seismic instruments, allowing for experiments on ‘marsquakes’ and the internal structure of the planet. InSight will undoubtedly build on the knowledge gained from the work of Curiosity and once again push the boundaries of planetary science to a whole new echelon of understanding.

NASA’s next Mars lander, InSight, will carry instrumentation to detect seismic activity, giving clues on the internal structure and composition of the planet.

Before then, Curiosity has important work to do and all eyes will be firmly fixed on the rover’s voyage of discovery en route to its primary destination, Mount Sharp; which the NASA mission team hope to at the base of a year from now.

Whatever happens during Curiosity’s operations on Mars, the results will be ground-breaking; Mars is an enigma waiting to be deciphered and each and every day will teach us something we didn’t know about one of our closest neighbours.

David Chapman